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To determine a suitable boundary-condition model for the contact line in oscillatory 
flow, an upright plate, oscillated vertically with sinusoidal motion in dye-laden water 
with an air interface, is considered experimentally. Constrained by the desirability of 
a two-dimensional flow field, eight frequencies in the 1-20 Hz range, each with seven 
different stroke amplitudes (0.5-6 mm) are chosen. The Reynolds number varies from 
1.6 to 1878.3 in the experiments, large relative to the Reynolds number in the 
conventional uni-directional contact-line experiments (e.g. Dussan V.’s 1974 experi- 
ments). To facilitate prediction, a high-speed video system is used to record the plate 
displacement, the contact-line displacement, and the dynamic behaviour of the contact 
angle. Several interesting contact-line phenomena are shown in the present results. An 
expression for A, the dimensionless capillary coefficient, is formulated such that the 
dynamic behaviour at the contact line is predicted reasonably well. A particle-tracking- 
velocimetry (PTV) technique is used to detect particle trajectories near the plate such 
that the boundary condition along the entire plate can be modelled. Two sets of PTV 
experiments are conducted. One set is for stick contact-line motion, the other set is for 
stick-slip contact-line motion. The results from the PTV experiments show that a 
vortex is formed near the meniscus in the stick-slip contact-line experiments ; however, 
in the stick contact-line experiments, no such vortex is present. Using the present 
experimental results, a model is developed for the boundary condition along the 
vertically oscillating vertical plate. In this model, slip occurs within a specific distance 
from the contact line while the flow obeys the no-slip condition outside this slip region. 
Also, the mean slip length is determined for each experimental stroke amplitude. 

1. Introduction 
The contact line is the intersection between two distinct fluids and a solid. In the 

present experiments, the fluids are water and air, the solid is glass. The contact angle, 
O,, is defined as the angle between the tangent to the water-air interface at the contact 
line and the water-glass interface, as shown in figure 1. The various phenomena which 
occur at the contact-line boundary are very complicated ; however, they are very 
important in many fluid flows, for example the spreading process of liquid drops and 
the generation and dissipation of waves interacting with a solid surface. The behaviour 
of the contact line may be couched as a relationship between the contact angle and the 
relative (liquid-to-solid) motion of the contact line. (Herein, ‘contact angle’ is used in 
lieu of the more proper term ‘apparent contact angle’. It is understood to indicate the 
macroscopic contact angle. For a complete explanation, see Dussan V. 1979.) To 
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FIGURE 1. Definition sketch of the contact-line problem. 0 = tan-l@y/ax), 0, is the contact angle, 
and 0 = 0,-$1 at the contact line. 

FIGURE 2. Contact angle versus relative velocity for uni-directional flow, showing hysteresis when 
V,  = 0 (from Dussan V. 1979). V,  is the velocity of the liquid relative to the solid. 

determine and quantify the behaviour of the contact line, measurements of the contact- 
line position and dynamic contact angle (i.e. contact angle with a moving contact line) 
must be conducted. 

The recent literature contains much information regarding the contact line and 
contact angle in uni-directional flows. Ablett performed one of the earliest experimental 
measurements of the behaviour of contact angles in 1923. A thorough discussion of 
static contact angle, Os,, and dynamic contact angle for unit-directional relative 
velocities (i.e. the velocity of the contact line relative to the velocity of the solid, 
V,( = VCpL - Kol id) )  is given by Dussan V. (1979). These results represent experiments 
with small Reynolds number, small Weber number, and small Froude number. 

A relationship between the contact angle and the contact-line velocity for low- 
Reynolds-number, uni-directional flows is given by Dussan V. (1979) and is shown in 
figure 2. Since the contact line moves steadily along a solid surface, there is no inertial 
effect from the contact-line movement. The relationship presented shows that the 
contact angle is a function of the velocity of the contact line only, i.e. 8, =f(V,) .  In 
figure 2, the range of static contact angle (i.e. when V,  = 0) which lies between a, and 
a, is called contact-angle hysteresis, a term coined by Sulman (1920). a, represents the 
receding angle defined as V ,  < 0 when the contact angle is less than a,, i.e. the contact 
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point moves toward the liquid. a, represents the advancing angle defined as V,  > 0 
when the contact angle is greater than a,, i.e. the contact point moves away from the 
liquid. (Herein, ‘contact line’ and ‘contact point’ are used interchangeably, rather than 
reserving them for three-dimensional and two-dimensional motions, respectively.) 
Figure 2 also shows that the contact-line boundary condition is nonlinear, even for 
low-Reynolds-number uni-directional steady motion. 

A difficulty arises in solving the viscous flow field with a (uni-directional) moving 
contact line as given by Dussan V. & Davis (1974). (In that paper they were also the 
first investigators to give a reasonable physical explanation of contact-line kinematics.) 
They showed that a singularity (a non-integrable stress) arises at the contact line if a 
moving contact line is forced to obey the no-slip boundary condition at the surface of 
a solid. To avoid the singularity at a moving contact line, several assumptions have 
been made by various investigators. A popular model is to allow the contact point to 
move along the solid surface. The basic idea came from Navier in the nineteenth 
century. Navier deduced that the resistant stress at a fixed solid surface is proportional 
to the relative velocity; therefore, he formulated the boundary condition as pu = 

,du/an.  Here p is a constant, u is the velocity parallel to the fixed solid surface, n is the 
direction of the unit-vector outward normal from the solid surface, and p is the 
dynamic viscosity of the fluid. A brief description of this slip boundary condition is 
given by Goldstein (1938). 

Unlike their uni-directional counterparts, oscillatory contact-line boundaries have 
not been studied experimentally in a significant way. Oscillatory contact-line 
boundaries are important in wave and other flow interactions with a solid boundary. 
For example, the frequency change and energy dissipation of small-scale waves 
propagating in a narrow channel have been encountered often in surface wave 
measurement, and cannot be predicted accurately without incorporating contact-line 
effects. There are a few references with discussions of the oscillating contact line in 
connection with wave phenomena and dissipation. Benjamin & Scott (1979) 
investigated waves propagating in a rimful narrow open channel with pinned-end (i.e. 
a fixed contact-line position) edge conditions. By considering edge conditions in their 
(linear) theory, they presented theoretical results that described the wave field more 
accurately than results obtained from the usual linearized theory. Graham-Eagle 
(1983, 1984) also considered fixed-edge constraints. Hocking (19874 showed the 
importance of surface tension effects at a contact line in the damping of 
gravity-capillary waves at a rigid boundary. In his analysis (with no contact-angle 
hysteresis), he demonstrated that most of the damping is due to capillary effects. 
Additionally, publications that demonstrate the importance of capillary effects in wave 
motion and damping include Miles (1967, 1991, 1992), Hocking & Mahdmina (1991), 
Joo, Schultz & Messiter (1990), Cocciaro, Faetti & Nobili (1991), and Cocciaro, Faetti 
& Festa (1993). 

As mentioned, little quantitative information is available at oscillating contact lines. 
Based on the relationship given by Dussan V. in 1979, Young & Davis (1987) proposed 
four possible relationships between contact angle and contact-line velocity for an 
oscillating contact-line boundary: (a) with contact-angle hysteresis; (b) fixed contact 
line ; (c )  fixed contact angle; and ( d )  smooth contact-angle variation (without contact- 
angle hysteresis). Using these proposed relationships and a force balance at the contact 
line, they calculated the oscillatory contact-line motion in the creeping-flow limit. 
(Since they considered small-plate motion, the inertial effect is small in their analysis; 
therefore, they assumed that the contact-line behaviour is governed by a relationship 
similar to that of Dussan V. 1979.) They found that contact-angle hysteresis and 
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0, 

FIGURE 3. Hocking’s modified edge conditions. Thin line and thick line represent the edge conditions 
with contact-angle hysteresis and without contact-angle hysteresis, respectively. V,  is the velocity of 
the water relative to the plate. 

steepening of the contact angle with increasing contact-line speed are dissipative 
effects. They also stated that the contact-line motion tends to lag behind the plate 
motion due to inertia of the contact-line motion. 

Hocking (19874 used an oscillating contact-line boundary condition in order to 
calculate the waves generated by a vertically oscillating vertical plate. Capillary effects 
at the contact line were included in his analysis. Two approximations (proposed by 
Young & Davis 1987) to the uni-directional model of Dussan V. (1979) were used. As 
these contact-line models are approximations to the experiments described herein, they 
are discussed in detail. He assumed that the fluid is inviscid and that the wave motion 
is linear (i.e. small-amplitude waves). Two different edge conditions are imposed in his 
two analyses : 

and 

a7 a7 
at ax 

V,  = -- Vp = A,- (no contact-angle hysteresis) 

if 121 < a 
(contact-angle hysteresis) (2) 

where V,  is the dimensionless relative velocity of the contact line, 7 is the dimensionless 
surface elevation, V, is the dimensionless plate velocity, and A, is the non-dimensional 
capillary coefficient. In Hocking (1 987 b), these variables were non-dimensionalized by 
the wave phase velocity, while herein they are non-dimensionalized by the product of 
the stroke amplitude and radian frequency of the electrodynamic shaker. A graph of 
(1) and (2) is shown in figure 3 .  The slope of the non-vertical lines in figure 3 is 
l/AH. The two relations also include an approximation of the contact angle, namely 
(6,--$) = tan-’ (a7/ax> z aq/ax (refer to figure 1). Using the above conditions, 
Hocking obtained the amplitude of the radiated waves and the energy dissipation 
due to contact-line hysteresis. 

Miles (1990) used a boundary condition along the plate (similar to that of Navier) 
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associated with a boundary condition at the contact line (similar to Young & Davis 
1987) in analysing the waves generated by a vertically oscillating vertical plate. In his 
analyses, viscosity was included, a non-zero initial free-surface meniscus was also 
considered (in one case), and variables were dimensional. He argued that A, (a 
dimensional capillary coefficient), a phenomenological parameter in the dimensional 
form of (l), must be a complex function of radian frequency, o, or equivalently, that 
av/ax cannot be assumed to be in-phase with av/at - Vp. A slip length, 1, (defined as 
slip velocity divided by shear at the wall), was adopted to replace the no-slip boundary 
condition along the entire plate. By a phenomenological hypothesis, he posed the slip 
boundary condition (which is equivalent to Navier’s slip model with 1, = ,u//3) 

(3) 
where V is the vertical velocity along the plate (= av/at at the contact line). He 
mentioned that 1, is a function of position along the plate surface and vanishes at a 
distance 1, ( E (2~/u) l /~ ,  the viscous length scale) away from the contact line. This means 
that the flow obeys the no-slip boundary condition at some distance 1, away from the 
contact line. For analytic simplicity, he assumed that 1, is constant and equal to 1, at 
the contact line, AD/2iw, but experimental results show that this is unrealistic. (Miles 
mentioned this in his paper.) As shown in $4, experimental results presented herein 
agree with Miles’ model which states that 1, is a function of space (and time) and 
decreases to zero within a distance 1, of the contact point; however, the results do not 
show whether the distance with non-zero 1, is equal to his estimate, 1,. It is noted that 
Miles did not solve the problem with 1, as a function of time or space. 

From this brief discussion, it is recognized that the edge condition at an oscillatory 
solid boundary bounded by a fluid-fluid interface is very important but remains 
unknown for large contact-line motion. Without a proper model at the contact line, it 
is impossible to predict accurately the waves produced by an oscillatory plate, those 
reflected from a stationary plate, or a combination of both. Many theoreticians have 
adopted some form of the model shown in figure 2 and a slip boundary condition along 
the solid surface to calculate the waves generated by a vertically oscillating plate. 
According to measurements presented herein, this model is incorrect for large 
oscillatory (sinusoidal) plate motion. 

The main goal of this research is to provide an explanation of oscillating contact-line 
behaviour and a boundary model at the contact line for large-amplitude oscillations. 
As will be shown, the present results exhibit three distinct contact-line motions: stick, 
partial slip (or partial stick), and free slip. (Here, ‘free slip’ is not intended to indicate 
that the equations of inviscid motion govern the contact-point region. Rather, it is used 
to describe the motion during which the contact line remains stationary relative to 
laboratory coordinates and the glass plate continues to move - there is no net force 
apparently acting on the contact line.) In this sense, the present results include more 
intriguing and complicated contact-line phenomena than have yet been studied. As 
there exists no proper boundary model in the vicinity of an oscillating contact line, it 
is useful to examine contact-line behaviour and determine a model for the relationship 
between the contact angle and the contact-line motion. 

In $2, the laboratory facility and measurement technique are discussed. Details are 
presented on the experimental procedures and the accuracy of the method is discussed. 
The experimental investigation including details of the measurements and data- 
analysis techniques is presented in $3.  Experimental results and a discussion are 
presented in $4. A relationship between the contact angle and the relative velocity of 
the contact line is given. In $ 5 ,  the conclusions are presented. 

v- v, = is a v p x ,  
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2. Measurement technique and experimental apparatus 
The laboratory facility is composed of seven components: a 5 W Argon-Ion laser; 

attendant optics (a spherical lens, a cylindrical lens, and a dielectric mirror) that shape 
the beam into a laser sheet with its beam waist at the mean water level; wave tank; 
glass-plate shaker assembly ; wave-maker signal generation and data processing 
system; water treatment system; and a high-speed 8-bit video system with intensified 
imager with gating to 1 ps and framing to 12 kHz. 

A schematic of the contact-line measurement system is shown in figure 4. Part (a), 
an elevation view of the longitudinal section of the wave tank, shows a schematic of 
the laser-sheet-generating system and the high-speed imaging system. A spherical lens 
with a focal length of 500 mm focuses the laser beam and a cylindrical lens with a focal 
length of 6.35 mm is used to expand the beam in one direction. After the laser sheet is 
redirected by a dielectric mirror, it forms a narrow-waisted laser sheet coincident with 
the quiescent water surface and parallel to the glass sidewalls of the tank. The thickness 
of the laser sheet is about 0.3 mm at the water surface. Rhodamine-B dye is added to 
the water as the fluorescing agent for the chosen 514.5 nm wavelength (green) light of 
the Argon-Ion laser. The rated power output of the laser is 5 W. The power output of 
the 514.5 nm wavelength is approximately 1.0 W as used. Figure 4(b), an elevation 
view of the transverse section of the wave tank, shows the alignment of the intensified 
imager and the glass plate. The laser sheet is parallel to the glass sidewall and is located 
approximately 9.1 cm away. The intensified imager, mounted on an optical rail is tilted 
by a small angle, about 7" above the mean water surface (to remove any obstructing 
influence from the meniscus on the tank sidewall). It is rotated azimuthally by a very 
small angle, about 2" downstream, such that a clear image is obtained and the error is 
within 1 % of the actual image. 

Particle-trajectory observations are used to obtain a qualitative understanding of the 
particle behaviour near the contact line. The basic principle of the particle-trajectory 
observation system is the same as that described by figure 4, with alterations: (i) the 
6.35 mm cylindrical lens is replaced by a cylindrical lens with a focal length of 75 mm 
to produce a higher-intensity laser light near the meniscus such that the seed particles 
are visible more readily to the intensified imager; (ii) the fluorescing agent, Rhodamine- 
B dye, is not used; instead 2.8 pm mean diameter TiO, particles are added as a seeding 
agent to track the fluid particle trajectories near the meniscus; (iii) the 514.5 nm 
wavelength green light is replaced by 488.0 nm wavelength blue light (the power output 
of the blue light is approximately 1.4 W as used) ; (iv) the intensified imager is tilted by 
an angle of about 9" below the mean water surface, and rotated azimuthally by an 
angle of about 8.5" downstream; and (v) a 200 mm camera lens with a 445 mm 
extension tube is used to magnify the contact-line/meniscus region such that a 
24 pm/pixel resolution is obtained (since better resolution is desired for the particle- 
trajectory observations). 

The dimensions of the wave tank are 300 x 100 x 40 cm with an operational water 
depth of approximately 14.5 cm during the experiments. The borosilicate glass plate is 
71.12 x 12.70 x 0.64 cm, immersed about 8.8 cm in water, and attached to an 
Unholtz-Dickie electrodynamic shaker Model 20. Data acquisition is accomplished 
using a Macintosh IIfx computer enhanced with National Instruments' LabVIEW 
software and data acquisition hardware packages. Data are analog filtered at 250 Hz. 

The water treatment system includes a 5 pm particulate pre-filter, a deionization 
tank, a carbon adsorption phase, and a 0.2 pm particulate final filter. The wave tank 
and glass plate are scrubbed meticulously before and after each use with ethyl alcohol. 
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FIGURE 4. Contact-angle and velocity measurement system : (a) Longitudinal section of 
the wave tank, (b) transverse section. 

Static surface-tension measurements using a DuNoiiy tensiometer are made 
routinely on the treated water and agree with accepted values for clean water at room 
temperature ; however, it is well-known that the presence of surface-active agents does 
not necessarily cause a significant change in static surface-tension measurements. Thus, 
the presence of these contaminants cannot be entirely ruled out. To check the variation 
of the static surface tension, a simple measurement of the static surface tension of 
treated water is conducted for a 7 h period. The result clearly shows that the variation 
of static tension in our experimental environment is within 1 dyn cm-' for a 7 h 
duration indicating that the assumption of constant surface tension for each experiment 
is reasonable. In addition, static surface-tension measurements have been made for 
Rhodamine-B-laden water and show an average constant decrease of about 
3.5 dyn cm-'. (These measurements are discussed in detail in the next section.) As 
TiO, particles are used for particle-tracking velocimetry measurements herein, static 
surface-tension measurements have also been made for various TiO, concentrations in 
treated water. The TiO, concentration does not change the static surface tension of 
treated water significantly. The variations of static surface tension are within 
0.5 dyn cm-l. 

The imaging system is a Kodak Ektapro CID (charge-injection device) intensified 
imager and controller coupled to an Ektapro EM 1012 processor (i.e. a controller and 
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recorder). The image is composed of 239 horizontal pixels by 192 vertical pixels. Pixels 
are undistorted in the two imaging dimensions. Herein, a camera lens with a focal 
length of 100 mm is used for the contact-line measurements with different combinations 
of extension tubes. These yield an average magnification of about 12.4 and an average 
resolution of about 59 ymlpixel in the images from which the apparent contact angles 
are determined. 

A standard procedure is used in each contact-line experiment. The wave tank and the 
glass plate are scrubbed carefully with ethyl alcohol before and after each set of 
experiments. Then, clean treated water (as described above) and 5 g of Rhodamine-B 
dye are added to the tank. The glass plate is oscillated initially (approximately 10 
minutes) to allow the contact line to become as uniform as possible. Then, the 
experiments are conducted. To monitor the variation of static surface tension during 
the experiments, a sample of dye-laden water is taken before and after each set of 
experiments. The static surface tension of the two samples is averaged and used as a 
reference static surface tension. Any given experiment is conducted within 2 h or the 
entire process is repeated. 

To determine the position of the plate as a function of time and thus the plate 
velocity, a marker with approximate dimensions 16 x 3.5 x 0.5 mm composed of a 
mixture of silicone and Rhodamine-B dye is affixed to the face of the glass plate. The 
silicone mixture fluoresces in green Argon-Ion laser light and is clearly visible in an 
image. The imager is positioned with 239 pixels vertical and 192 pixels horizontal. A 
framing rate of 2000 Hz is required for the high-frequency oscillations (i.e. 12, 16 and 
20 Hz) which changes the number of pixels from 192 horizontal pixels to 96 horizontal 
pixels. The position of the oscillating plate is determined from a reference point chosen 
arbitrarily as the bottommost point of the marker strip. The resolution is determined 
using a precision Ronchi ruling with 4 cycles mrn-l. Using the known line spacing of 
the Ronchi ruling and the corresponding number of pixels obtained from the recorded 
images (using vertical and horizontal reticles available in the Ektapro), the resolutions 
are computed. The average resolution is about 59pm/pixel. The accuracy of the 
images is considered in Perlin, Lin & Ting (1993). The number of images downloaded 
is sufficient to yield a minimum of 2 periods of plate oscillation. 

The measurement technique of the particle-tracking velocimetry (PTV) is nearly the 
same as the technique used in the contact-line measurements ; however, Rhodamine-B 
dye is not added. A syringe is used to inject TiO, particles (premixed with treated 
water) into the desired observation region (near the meniscus). A 24 ym/pixel 
resolution is used for the PTV observations to obtain as clear an image as possible. 
2 Hz oscillations with stroke amplitudes of 0.5 and 4 mm are chosen as two typical 
cases (one exhibits stick contact-line motion while the other one exhibits stick-slip 
contact-line motion). The purpose of these experiments is to obtain a qualitative under- 
standing of the boundary condition along the entire plate by observing the particle 
behaviour at the contact point and near the meniscus. Therefore, sketches of the flow 
fields near the contact-line region are presented in $4 based on these observations. 

3. The experimental investigation 
The experimental frequencies and stroke amplitudes of the plate motion are chosen 

to retain two-dimensionality. The frequencies chosen are 1,2,4, 6, 8, 12, 16 and 20 Hz 
each with seven stroke amplitudes, 0.5, 1, 2, 3,4, 5 and 6 mm. A relationship between 
the contact angle and the relative velocity of the contact line is desired for the widest 
range of frequency oscillations and stroke amplitudes possible that includes a large 
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Approximate Oscillation frequency (Hz) 
stroke amplitude 

20 (mmi 
0.5 
1 
2 
3 
4 
5 
6 

1 2 4 6 8 

1.6107 3.5107 6.7860 10.940 15.346 
6.2470 12.197 24.143 40.009 49.395 

24.948 50.348 98.927 150.25 196.94 
60.992 120.47 232.71 346.55 461.99 

116.04 227.85 436.37 648.27 872.27 
174.84 344.20 679.00 1023.1 1357.4 
249.66 494.75 963.95 1401.2 1878.3 

12 

21.362 
73.559 

306.84 
694.73 
1296.8 
- 

- 

16 

31.667 
102.08 
418.21 
912.65 
- 

- 

- 

36.144 
129.34 
509.80 
154.1 

TABLE 1. Reynolds number for each experiment, defined as @V,,,,s)/,u, where p is the c .nsity of 
water, V,,,, is the maximum plate velocity, s is the stroke amplitude of the oscillation, and ,u is the 
dynamic viscosity of water. 

Approximate Oscillation frequency (Hz) 
stroke amplitude 

(mm) 1 2 4 6 8 12 16 

0.5 0.503 0.526 0.526 0.526 0.549 0.549 0.572 
1 0.984 0.984 0.984 1.007 0.984 0.984 1.007 
2 1.939 1.967 1.967 1.967 1.967 2.021 2.021 
3 3.054 3.054 3.026 3.026 3.026 3.026 3.026 
4 4.156 4.156 4.156 4.141 4.141 4.141 - 

5 5.074 5.074 5.143 5.177 5.177 - - 

6 6.048 6.088 6.088 6.048 6.088 - - 

TABLE 2. Stroke amplitude in mm of the plate oscillation for each experiment. 

20 

0.572 
1.007 
2.021 
3.026 
- 

- 

- 

Measurement Approximate stroke amplitude (mm) 
parameter 

0.5 1 2 3 4 5 6 Average 
value 

Resolution 0.0458 0.0458 0.0546 0.0566 0.0627 0.0686 0.0806 0.0592 

12.4 

0.01 1 

(mm/pixel) 

of images 

concentration 
(g 1-9 

surface tension 
(dyn cm-’) 

temperature 
(“C) 

( 4  

Magnification 15.5 15.5 13.0 12.5 11.3 10.3 

Dye 0.012 0.012 0.012 0.011 0.011 0.01 

Averaged 67.0 66.0 57.2 64.2 61.8 64.4 

Water 18.5 19.0 20.5 19.8 21.0 19.0 

Water depth 14.75 14.7 14.6 14.5 14.4 14.3 

8.8 

0.01 

63.9 

17.7 

14.2 

63.5 

19.4 

14.5 

TABLE 3. Experimental parameters for each set of experiments (grouped by stroke amplitude). 
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Approximate 

(mm) 
stroke amplitude - 

0.5 
1 
2 
3 
4 
5 
6 

Oscillation frequency (Hz) 

1 2 

52.1 48.5 
42.7 40.4 
30.8 31.3 
31.6 35.8 
36.2 36.7 
41.5 43.4 
39.9 37.8 

4 6 8 12 

53.5 46.4 47.8 39.8 
42.1 43.4 43.0 44.6 
30.3 28.6 29.5 31.0 
32.7 32.5 28.5 34.3 
39.2 35.0 29.8 33.1 
42.3 36.1 39.1 - 

28.0 33.8 31.7 - 

TABLE 4. Static contact angle in degrees for each experiment. 

16 20 

37.5 37.0 
43.2 43.1 
27.8 24.0 
30.9 31.4 

variation of Reynolds numbers, see table 1. As shown in the table, the Reynolds 
number varies from 1.6 to 1878.3, indicating that the Reynolds numbers of the present 
experiments are large relative to those of Dussan V.'s (1974) experiments. To examine 
the frequency effects and the stroke-amplitude effects on the behaviour of the contact 
line, each frequency is oscillated at seven different approximate stroke amplitudes. The 
actual stroke amplitude of the plate oscillation for each experiment is presented in table 
2. The blank cells in the tables (under the columns of frequencies 12, 16 and 20 Hz) are 
experiments that were rejected due to the occurrence of cross-waves (flow field is three- 
dimensional). 

Table 3 presents the resolution, magnification of images, dye concentration, 
averaged surface tension, water temperature, and water depth for each set of 
experiments. According to the results of the static surface-tension measurements, the 
averaged surface tension of each set of experiments can be treated as a reference surface 
tension for the set of experiments; however, two measured surface tensions are 
averaged to determine the reference surface tension. Although the variation of surface 
tension is small for a test of 7 h duration, the reference surface tension for each set of 
experiments can be different due to the homogeneity of dye in water, the difference in 
dye concentration, and the difference in temperature (the effect due to the last two 
factors, in fact, is small). It is accepted generally that the surface tension of pure water 
at temperature 20 "C is 72.4 dyn cm-l; however, the average of the averaged surface 
tensions of the dye-laden water is 63.5 dyn cm-' at an average temperature of 19.4 "C. 
The large difference between these two values is due to the sampling technique, which 
probably contains proportionately more surface contaminants, and the presence of the 
dye. It does not represent the actual surface tension in the tank. (Experiments 
conducted over a 7 h period on dye-laden water in a beaker with the same dye 
concentration used in the main experiments show an average surface tension of about 
68.1 dyn cm-l.) For the test frequencies 1, 2,4, 6, 8, 12, 16 and 20 Hz framing rates are 
125, 250, 500, 1000, 1000, 2000, 2000 and 2000Hz and the associated viscous 
lengthscales are 565, 400, 283, 231, 200, 163, 141 and 126 pm, respectively. 

The static contact angle is measured at the beginning of each experiment. This 
information is shown in table 4. As mentioned in $1, the static contact angle is not 
unique for a particular gas-liquid-solid interface; it exists over a finite angular region. 
As shown in table 4, the static contact angles, even for the same set of experiments 
(same frequency), are different. The difference between the maximum and minimum 
static contact angles for each set of experiments varies from as large as 16.5" to as small 
as 4.2". 

To verify experimental repeatability, two consecutive periods of oscillation are 
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FIGURE 5. A typical repeatability test of a 2 Hz oscillation for two consecutive cycles with a stroke 
amplitude of 2.1 14 mm. T is the period of the oscillation (m, the first period and 0, the second 
period). (a) Plate displacement, (b) contact-line displacement, (c) time history of the contact angle. 

measured. A 2 Hz oscillation for two consecutive cycles with a stroke amplitude of 
2.1 14 mm is presented to demonstrate the repeatability. The results are shown in figure 
5(a-c), where On,,, is the normalized dynamic contact angle defined as dynamic 
contact angle, O,, divided by the maximum dynamic contact angle, O,,,,. The root- 
mean-square differences are 0.015, 0.042 and 0.043 for figures 5 ( a t 5  (c), respectively. 
The results demonstrate that the repeatability of the experiment is adequate. 

Obtaining the position of the glass plate, the contact point, and the dynamic contact 
angle from the recorded images is the first step in analysing the data. The plate motion 
is revealed by tracking the position of the marker (reference) point on successive images. 
The motion of the contact point is usually determined by tracking the uppermost point 
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of the meniscus intersection with the surface of the glass plate. However, when the 
contact point is undergoing free-slip motion near its maximum vertical position (i.e. the 
contact point remains fixed while the plate moves upward or downward in the vicinity 
of the maximum top-stroke position), usually about 2 or 3 pixels but a maximum of 
4 pixels from the surface of the glass plate cannot be detected due to low light intensity. 
Since, during that motion, the meniscus near the contact point forms a very thin film, 
the light intensity due to fluorescence is very weak relative to the intensity of the 
remaining fluorescing liquid; therefore, it is not visible. Linear extrapolation from the 
adjacent visible points on the water surface to the plate approximates the position of 
the contact point. A protractor is used to measure the dynamic contact angles. The 
estimated errors of position and contact-angle measurements are about 59 pm and 

l .Oo, respectively. 
Once the experimental data are obtained, the relevant information on the behaviour 

of the contact line is determined using a standardized data-analysis procedure. The 
output includes the actual scale-measured plate motion, the best curve-fitted plate 
motion, the non-dimensional plate velocities, the actual scale-measured contact-line 
motion, the best curve-fitted contact-line motion, the non-dimensional velocities of the 
contact line, the non-dimensional relative velocities of the contact line, the dynamic 
contact angles, and the dimensionless capillary coefficients, h ( = the non-dimensional 
relative velocity of the contact line divided by the dynamic contact angle, hD/V,,,,J. 
All velocities are non-dimensionalized by the maximum plate velocity, V,,,, (= 
angular oscillation frequency x stroke amplitude). Direct forward-differencing in time 
gives an unrealistic velocity versus time curve (a somewhat step-like velocity curve). 
(Since the plate displacement is nearly sinusoidal as seen in figure 5(a), the plate 
velocity should be sinusoidal, too.) A comparison of plate velocities between the direct 
forward-differencing of the original plate-displacement data and the differentiation 
from the curve-fitted plate-displacement data (discussed below) for a 2 Hz oscillation 
with stroke amplitude equal to 1 mm shows that the result from the direct forward- 
differencing is not sufficiently smooth to represent a sinusoidal velocity curve. The step- 
like discontinuities obtained by direct forward-differencing of the original plate-motion 
data are due to resolution limitations. To remedy the situation, two sequential methods 
are used : a running-average technique, and a Fourier-series expansion. The running 
average smooths the data and the Fourier-series expansion makes the data more 
realistic (a continuous velocity curve is generated). Depending on the magnitude of the 
stroke amplitude, 3-point and 5-point running averages are used in the smoothing 
process. Normally, a 3-point running average is used when stroke amplitudes are 
greater than or equal to 3 mm and a 5-point running average is used when stroke 
amplitudes are less than or equal to 2 mm. For both plate motion and contact-line 
motion, the mean value is subtracted to shift the abscissa to the zero-displacement 
position. A Fourier-series expansion is used to determine the best-fit to the measured 
data and to avoid small discontinuities in the velocity curves. The results are presented 
in the following section. 

4. Experimental results and discussion 
The primary objective of the experiments is to determine the boundary condition at 

the contact line and along the solid surface of a vertically oriented vertically oscillating 
plate. Seven sets of experiments including 48 individual experiments are conducted to 
examine the behaviour of the contact line. In addition, two PTV experiments (one for 
stick contact-line motion and one for stick-slip contact-line motion) are presented to 
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FIGURE 6. Contact-line motion and dynamic contact angle for a 2 Hz oscillation: (a) low-amplitude 
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aid in modelling the boundary condition along the surface of the glass plate. Below, 
experimental results and discussion are presented, followed by suggested boundary 
conditions at the contact line and along the plate. 

The present analyses reveal intriguing and complicated phenomena and provide 
information regarding the contact-line boundary condition at the glass-water-air 
interface. The amplitude and frequency effects on the contact-line behaviour and the 
time history of the dynamic contact angle are discussed in $4.1. The relationship 
between the dynamic contact angle and the relative motion of the contact line, and the 
time history of h are discussed in $94.2 and 4.3, respectively. Results show consistent 
behaviour over a large range of oscillation frequencies. Subsection 4.4 presents the 
observational results of the PTV measurements. From these experiments, the particle 
behaviour along the plate and near the meniscus is revealed. Qualitatively, the 
boundary condition along the plate can be proposed from the PTV measurement 
results. Non-dimensional analysis is given in $4.5. Subsection 4.6 presents the proposed 
boundary condition along the plate. Since the experimental results exhibit similar 
behaviour for different frequencies, only 2, 8 and 16 Hz results are presented. (For 
more complete information on the experiments and results, see Ting 1994.) 

4.1. Contact-line motion and time history of the contact angle 
The contact-line motion and the time history of the contact angle are important in 
studying the complicated contact-line phenomena. They provide insight into the 
dynamic behaviour of the contact angle at the contact line. Analyses determine the 
effects of stroke amplitude and oscillation frequency on the dynamic contact-line 
behaviour. A discussion of the amplitude effect and the frequency effect on the dynamic 
contact-line behaviour is presented in the following two subsections. 

4.1.1. Amplitude effect 
Several stroke-amplitude experiments were conducted for each oscillation frequency 

to examine the amplitude effect on the behaviour of the contact line. Figures &8 
present the displacements of the contact line and the time history of the dynamic 
contact angle for frequencies of 2, 8 and 16 Hz, respectively, at the various stroke 
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oscillation. The line representations are the same as in figure 6(a). 

amplitudes, s. The thick lines represent the contact-line displacement and the thin lines 
represent the time history of the dynamic contact angle. Since the curve-fitted data 
approximate the measured contact-line displacements very well, only the measured 
data are presented. From these data, two regions are apparent which are termed the 
' low-amplitude regime ' and the ' higher-amplitude regime '. The low-amplitude regime 
is oscillations with stroke amplitudes less than 4 mm and the higher-amplitude regime 
is oscillations with stroke amplitudes greater than or equal to 4 mm. 

Part (a)  of figures 6-8 present the low-amplitude regime of the contact-line motion 
and the time history of the dynamic contact angle for frequencies of 2, 8 and 16 Hz, 
respectively. Part (b) of figures 6 and 7 present the higher-amplitude regime for 
frequencies of 2 and 8 Hz, respectively. These regions exhibit different contact-line 
behaviour and each is discussed below. 

In the low-amplitude regime, the primary characteristic is that the peak-to-peak 
values of the displacement of the contact line and the time history of the dynamic 
contact angle increase as the stroke amplitude of oscillation increases. As shown in 
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these figures, most contact-line-displacement curves are not sinusoidal, but they 
become more sinusoidal as the stroke amplitude decreases. As the stroke amplitude is 
increased, the crest of the contact-line-displacement curve and the trough of the 
dynamic-contact-angle curve become flatter indicating that the contact point and the 
dynamic contact angle remain fixed at that position (i.e. the contact line is undergoing 
free-slip motion relative to the plate). In this region, the flat portion of the curve always 
occurs at the top-stroke position of the glass plate (i.e. the free-slip motion only occurs 
near the maximum positive plate position). These figures also show that the flat portion 
occurs for a longer duration as the plate moves toward the top-stroke position. Then, 
near the top-stroke position, free-slip motion occurs for a longer time as the plate 
moves toward its maximum position than as the plate moves away from its maximum 
position. 

The higher-amplitude regime exhibits additional phenomena and more complicated 
behaviour. The basic characteristics of this regime are that (i) the curves become more 
asymmetric, (ii) the peak-to-peak values of the displacement of the contact line and the 
time history of the dynamic contact angle are decreased as the stroke amplitude of 
oscillation is increased, and (iii) the maximum and minimum positions of the contact 
point do not necessarily occur in-phase with the maximum and minimum plate 
positions. The contact-line motions for stroke amplitudes of 5 and 6 mm are nearly 
identical, especially for the higher-frequency oscillations such as the 6 and 8 Hz 
oscillations. This implies that the contact-line motion becomes insensitive to the 
variations of stroke amplitudes when stroke amplitudes become larger than 5 mm. The 
higher-amplitude-regime data also show that free-slip motion does not necessarily 
occur near the top-stroke position ; however, there still is no evidence that free-slip 
motion occurs near the bottom-stroke position. This supports the above-mentioned 
statement that, in the low-amplitude regime, the bottom-stroke position should be the 
last location at which free-slip motion should occur. In this regime, the contact-line 
motion near the top-stroke position does not simply remain fixed. Its kinematic 
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behaviour is more like a ‘descending step’ near the top position in the graph of the 
contact-line motion. Since free-slip motion occurs not only near the top-stroke 
position, the time-history curves show that there are other constant dynamic contact 
angles during an oscillation period. The cause of this complicated phenomenon is still 
unknown and additional investigations with larger-amplitude and higher-frequency 
oscillations are required. 

Figure 9 shows the relationship between the maxima of the dynamic contact angles, 
stroke amplitudes, and frequencies of oscillation very clearly. The maximum dynamic 
contact angle is increased in the low-amplitude regime and decreased in the higher- 
amplitude regime as the stroke amplitude is increased ; however, the minimum dynamic 
contact angle exhibits the opposite behaviour. It is of interest to know whether the 
curves cross and how they intersect as the stroke amplitude approaches zero. That is, 
whether the contact angle approaches 0,, as stroke amplitude goes to zero. This is not 
pursued here. 
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FIGURE 11. Time history of dynamic contact angle for all frequencies with different stroke 
amplitudes. Symbols correspond to those in figure 10. 

4.1.2. Frequency effect 
To isolate the effect of frequency on the behaviour of the contact line, figures 10 and 

11 are presented. Contact-line positions with fixed stroke amplitudes are shown versus 
time for the different frequencies in figure 10, showing that the frequency effect is 
almost negligible at small stroke-amplitude oscillations, especially for stroke 
amplitudes equal to 0.5 and 1 mm. Since most of the contact-line motion is essentially 
stick motion, the displacement of the contact line almost equals the displacement of the 
glass plate; therefore, it is expected that the frequency effect is small at stroke 
amplitudes equal to 0.5 and 1 mm. As the stroke amplitude is increased, the frequency 
effect becomes larger; however, it is still small compared with the amplitude effect on 
the contact-line behaviour. Figure 11 shows the time history of the dynamic contact 
angle at different frequencies with different stroke amplitudes. In the figure, curves with 
the same stroke amplitude have similar shapes; therefore, the frequency effect on the 
dynamic contact angle is small compared with the amplitude effect. 
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4.2. Relationship between the dynamic contact angle and the relative motion of the 
contact line 

For an oscillating contact line, it is believed that the relative velocity and acceleration 
contribute to the behaviour of the dynamic contact angle. Since the relative acceleration 
of the contact line can be obtained by direct differentiation of the relative velocity with 
respect to time, it is unnecessary to show all of the results of the relative acceleration. 
The results of the relationship between the dynamic contact angle and the relative 
acceleration of the contact line are inconclusive. Therefore, attention is focused on the 
relationship between the dynamic contact angle and the relative velocity of the contact 
line. This is followed by a brief description of the relationship between the dynamic 
contact angle and the relative acceleration of the contact line. 

4.2.1. Relationship between the dynamic contact angle and the relative velocity of the 
contact line 

Figure 12 is a typical graph of the relationship between the plate motion and the 8,- 
versus-<(,,,, curve for the 1 Hz oscillation with stroke amplitude equal to 3 mm. OC 
represents the apparent dynamic contact angle. The relative velocity of the contact line, 
V,, is defined as V,- Vp. (Thus, if V ,  = V,- V, = 0, the contact point moves with the 
glass plate and there is no relative motion.) V,/V,,,, is the dimensionless relative 
velocity of the contact line, I&,). The inclined arrows indicate the position where the 
(shown) relative plate motion occurs, while the vertical arrows indicate the magnitude 
and the direction of plate velocity. 
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This figure facilitates a clearer interpretation of the relationship between the 
dynamic contact angle and the relative velocity of the contact line in the low-amplitude 
regime (i.e. free-slip motion only occurs near the top-stroke position). It shows that the 
dynamic contact angle remains fixed when the plate position is near the maximum 
position. As the plate moves sufficiently downward, the dynamic contact angle begins 
to increase and it reaches its maximum value near the minimum plate position. Then, 
the contact angle decreases until the contact point undergoes free-slip motion (i.e. the 
contact angle remains fixed, again). Also, it is shown that the contact-line motion is 
more stick-like when the plate position is near the minimum plate position. 

The experimental results of the V,(non)-Oc curves for frequencies of 2, 8 and 16 Hz are 
shown in figures 13-1 5 ,  respectively. These figures have totally different features than 
the conventional uni-directional curve shown in figure 2. Basically, the shape of the 
curves looks like an inverted T. In a periodic oscillation, the contact angle varies 
continuously with the contact-line motion and it is difficult to define the advancing and 
receding contact angles. The contact-angle hysteresis occurs along the line V,  = 0; 
however, the conventional definition of the hysteresis phenomenon is based on a static 
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FIGURE 14. Contact angle versus relative velocity of the contact line for an 8 Hz oscillation. 
Symbols correspond to those in figure 13. 

situation. For periodically oscillating contact-line motion, there is no static situation, 
but there are data which lie on the curve, V,/V,,,, = 0, and so these data are 
associated with stick motion. The duration of this stick region changes with each 
experimental case. 

As mentioned in the previous paragraph, the motion of the contact line is more stick- 
motion like when the plate is driven with strokes of 0.5 and 1 mm: most of the data 
lie along the line V,/V,max = 0. In the low-amplitude region, as the stroke amplitude 
is increased, the horizontal bottom portion of the graph widens. Since this flat region 
is that of free-slip motion, the apparent dynamic contact angle remains constant. In 
general, all of the experiments exhibit similar results (see the graphs with strokes of 0.5, 
1, 2 and 3 mm in figure 13). 

In the higher-amplitude regime, the curve is slightly different. The approximate 
horizontal region is no longer a line. It becomes a step-like curve. There are multiple 
locations in the bottom region of the curve (upper plate position) where the dynamic 
contact angle remains piecewise constant. It is also seen that the top, right-hand side 
of the curve (during the downstroke motion) moves from the V,/ Vpmax = 0 curve and 
the top curve 'opens' as the stroke amplitude is increased. (That is, in the higher- 
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amplitude regime, as the stroke amplitude is increased, the contact line near the 
minimum plate position exhibits more slip-like motion during downstroke motion than 
during upstroke motion.) Generally, the experimental results in the higher-amplitude 
regime exhibit the above characteristics (see the graphs with stroke amplitudes of 4, 5 
and 6 mm in figure 13). 

If one graphs the contact angle versus relative velocity of the contact line at seven 
stroke amplitudes, each with eight test frequencies, the effect of frequency is 
demonstrated. For the same stroke amplitudes, the relationships are quite similar, 
again indicating that the frequency effect on the relationship between 0, and V&n) is 
smaller than the amplitude effect. For stroke amplitudes of 0.5 and 1 mm, the 
experimental data are close to V,/Vpm,, = 0 (i.e. the contact-line motion is stick-like 
for small-amplitude oscillation regardless of the oscillation frequency). As the stroke 
amplitude is increased, the bottom of the curve flattens in the low-amplitude regime 
and becomes step-like in the higher-amplitude regime. It is intriguing that the 
relationship between the dynamic contact angle and the relative velocity of the contact 
line is so uniform over such a large range of frequencies (from 1 to 20 Hz) during which 
it generates such different wave fields (gravity and gravity-capillary wave fields with 
internal resonances, parasitic capillaries, and even triad and quartet resonances). 

4.2.2. Relationship between the dynamic contact angle and the relative acceleration of 
the contact line 

Figure 16 is a typical graph of the relationship between the dynamic contact angle 
and the relative acceleration of the contact line for a 2 Hz oscillation. Basically, the 
shape of the curves looks similar to an S. When stroke amplitude is small, most of the 
data lie along the line a,/apm,, = 0. As stroke amplitude is increased to 4 mm, the data 
are scattered more. Compared to figure 13, each curve in this figure is more irregular, 
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i.e. the shapes do not look similar to each other (as do the curves in figure 13). Also, 
the calculation error incurred in determining the acceleration may be large owing to the 
two differentiations required of the Fourier-series approximation of the contact-line- 
displacement curves. Therefore, the contact-line model will be based upon the relative 
velocity of the contact line. 

From the present results, it is concluded that using the relationship in figure 2 as the 
boundary condition for a periodically oscillatory contact line is unacceptable. The 
contact-line motion is not symmetric and the relationship between 6, and V,  is much 
more complex than the conventional one. A suitable boundary condition at the contact 
line should be modelled based on the present results. A discussion of the boundary 
condition model is presented in g4.6. 

4.3. Time variation of ~ ( n o n , / B e  
To determine the boundary condition at the contact line, a new relationship is required. 
Treating A, the non-dimensional capillary coefficient, as a constant to analyse contact- 
line problems is incorrect. Also, the surface slope, ay/ax, at the contact line is not small, 
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so that the first term in a Taylor series approximation of tan-l(aT/ax) is no longer a 
good approximation. Therefore, (1) needs to be rewritten as 

and = 41; 3, w> = Vr(non,/ee, ( 5 )  
where t is time, s is the stroke amplitude of the oscillation, and w is the angular 
frequency of oscillation. Note that (4) is non-dimensionalized by V,,,, (= ws) whereas 
Hocking's (1) is non-dimensionalized by the wave phase velocity. According to (9, h 
is a function of time and varies with stroke amplitude and the frequency of the 
oscillation. Using ( 5 )  with the data of figures 13-15, the time variation of h can be 
graphed. This is shown in figures 17-19. From these figures, similar conclusions are 
made as before: (i) h(t)  for small s (i.e. 0.5 and 1 mm) is approximately zero (i.e. V,  = 
V,, no-slip motion) and (ii) the stick motion becomes less in both the low-amplitude 
regime and the higher-amplitude regime as s is increased. The maximum value of h 
increases in the low-amplitude regime but decreases in the higher-amplitude regime as 
s is increased. 
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Figure 20 shows the time variation of F&,n)/Bc for several experimental frequencies 
with the seven test-stroke amplitudes. Again, compared with the amplitude effect on A, 
the frequency effect is small. As mentioned regarding the higher-amplitude regime, the 
contact-line motion becomes insensitive to the variation of s when s is larger than 
5 mm. Likewise, the relative velocity of the contact line becomes insensitive to the 
variation of s. Also, the frequency effect on the behaviour of the dynamic contact angle 
is small. The above results show that the frequency effect is unimportant relative to the 
amplitude effect ; therefore, the frequency effect is neglected in the remaining discussion. 

The general characteristics of the data are that each non-dimensional capillary- 
coefficient curve is composed of three parts: h > 0, h = 0, and h < 0. A frequency 
change has little affect on h while the variation of stroke amplitude changes the relative 
duration of the three regions. The non-dimensional capillary coefficient, A, is not 
always positive as is the A, used by Hocking (19876). It is also a function of time. 

4.4. Results from PTV observations 
Two sets of PTV experiments are presented. In one set, the particle behaviour near a 
stick-motion contact line is observed. A 2 Hz oscillation with a stroke amplitude of 
0.5 mm is chosen as a typical case. In the other set, observation of the fluid motion near 
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FIGURE 19. Time variation of V;c,,n,/Bc for a 16 Hz oscillation. Symbols correspond 
to those in figure 13. 

a stick-slip-motion contact line is observed. A 2 Hz oscillation with a stroke amplitude 
of 4 mm is chosen as a typical case. To contrast the experiments, the same frequencies 
are used. The results are markedly different. 

According to Miles’ (1990) assumption, the slip flow along the liquid-solid interface 
occurs only within some distance, I,, the viscous lengthscale. Beyond this distance, 
below the contact point, the flow obeys the no-slip condition. To investigate this 
assumption, increased resolution is required in the vicinity of the contact line. Since the 
viscous lengthscale for a 2 Hz oscillation is about 400 pm, the imaging setup used in 
the contact-line measurements (average resolution about 59 pm/pixel) cannot be used 
here, as the length of this region is equal to only N 7 pixels. The best resolution that 
could be achieved is 24 pm/pixel. This resolution means that there are N 17 pixels 
along 1, as defined by Miles. A resolution of 34 pm/pixel is also used. 

To determine the general particle behaviour near the meniscus, a 34 pm/pixel 
resolution is used. Particle images of the stick contact-line motion relative to the plate 
are not presented, since there is no vortex formed near the meniscus. Figure 21 presents 
a time series of PTV experiments for a 2 Hz oscillation with stroke amplitude equal to 
4 mm. Since the camera’s elevation is slightly below the mean water-surface elevation, 
and a glass plate is present, the image will have two mirror images. One is due to the 
reflection from the free surface of the particle-scattered light and the other is due to 
reflection from the glass plate. Therefore, as shown in figure 21, the actual image is 
located within the region delineated by the two solid white lines in the first image. 
When viewed in sequence, these images also show that a vortex is formed near the 
meniscus when the contact line undergoes the stick-slip motion (stroke amplitude 
equal to 4 mm). The particle motions, easily seen in the video, are very difficult if not 
impossible to show in still images. 

As expected, the particle behaviour near the meniscus during stick-slip motion is 
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much more complicated. Figure 22(a, b) shows sketches of the particle trajectories. 
Since the particle behaviour is periodic, the starting position of the motion is chosen 
arbitrarily and the succeeding sketches are sequential. Here, a sketch of the particle 
trajectory beginning at the top-stroke position is presented. Figure 22 (a) ,  sketches 
(i-iv), presents the particle trajectories during the downstroke motion. Sketch (i) 
presents the fluid motion when the contact point undergoes free-slip motion just as the 
upward plate motion is reversed. The particles along the interfaces move with the plate 
and the free surface in a counterclockwise direction while the particles inside the liquid 
move clockwise and remain in a clockwise vortex (due to the fluid inertia already 
present in the flow as seen in sketch (vi)). Therefore, a large shear occurs near the free 
surface. (The velocities shown in sketch (i) are averaged velocities calculated by 
measuring the particle displacements during 20 ms.) The cause of the large shear near 
the free surface is unknown. In a short time (approximately 55 ms), as the plate 
continues downward with the contact point still fixed (in laboratory coordinates), the 
inertia of the inner particles has been damped entirely and the particles reverse their 
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FIGURE 21. A time series of PTV experiments for a 2 Hz oscillation with a 
stroke amplitude of 4 mm. 

direction to counterclockwise and form a counterclockwise vortex. In the meantime, 
the particles along the interfaces maintain the same motion as shown in the sketch (i). 
This flow is depicted in sketch (ii). As the plate continues moving downward and the 
contact point becomes fixed to the plate, the particles exhibit the behaviour shown in 
sketch (iii). Particles (interfacial and internal particles) seem to be ejected from the 
contact point (particles move away from the contact point into the fluid volume). As 
the plate moves near the bottom-stroke position, the contact point remains in stick 
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FIGURE 22. A sketch of the particle trajectories near the meniscus for the stick-slip contact-line 
motion. The portion of the plate shown is 5.7 mm in length. Sketch (i) shows that there is a significant 
shear layer near the free surface. The velocity at the upper (free) surface is about 3.8 mm s-l, the 
velocity at the upper surface of the vortex is about 6.0 mm s-', and the plate velocity is about 
18.0 mm s-l. 

motion, as shown in the sketch (iv), and the particles along the liquid-gas interface 
move with the plate (i.e. the entire free surface near the meniscus is depressed with the 
plate, as are the internal particles). 

Figure 22(b), sketches (v) and (vi), presents the particle trajectories during the 
upstroke motion. Sketch (v) shows the particle trajectories as the plate reverses direction 
with the contact point still fixed to the plate. The particles along the interfaces and 
inside the liquid are drawn upward with the plate, i.e. all the particles move (in 
laboratory coordinates) toward the contact point. As the motion continues, the contact 
point begins to slip, the particles along the plate move toward the contact point, and 
the particles along the free surface move away from the contact point, sketch (vi). At 
this moment, the internal particles move clockwise and form a clockwise vortex. As the 
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FIGURE 23. The effects of (n) Reynolds number and (b) Weber number on the maximum and 
minimum non-dimensional contact-line velocities: +, s = 0.5 mm; 0, s = 1.0 mm; ., s = 2.0 mm; 
0, s = 3.0 mm; A, s = 4.0 mm; a, s = 5.0 mm; 0,  s = 6.0 mm. 

plate direction reverses, the fluid motion returns to that shown in sketch (i) and 
continues periodically. 

From the above description of fluid motion during stick-slip contact-line motion, it 
is obvious that the particle behaviour near the meniscus is very complicated. A detailed 
description and explanation of the particle behaviour in the immediate vicinity of the 
contact point along the plate surface and the free surface is not presented as increased 
resolution is required. 

According to the PTV experimental observations, slip occurs within a small region, 
say L,; however, the magnitude of L, is not determined for the following reasons. It 
is expected that the total contact-line excursion and the variation of the dynamic 
contact angle as determined from the PTV experiments should be nearly the same as 
the excursion for the 2 Hz oscillation with 4 mm stroke amplitude, about 4.24 mm, and 
the dynamic contact angles measured from the contact-line experiments. The PTV 
results show that the measured excursion is about one-third of the measured excursion 
from the contact-line measurements. The difference between the maximum and 
minimum dynamic contact angles in the PTV experiments is much smaller than the 
difference from the contact-line measurements. Experiments verified that the 
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differences between the excursions and the dynamic contact angles are due to the PTV 
imaging technique, not to the seed particles altering the fluid properties significantly. 
The imaging technique introduces error as follows: the image due to reflection from the 
particles along the plate interferes with the view of the meniscus near the contact point 
such that the excursion length and contact angle are obscured. (A technique that will 
allow particle tracking very close to the free surface and may have helped greatly in this 
case has been developed recently and will be discussed in a forthcoming publication.) 

These experiments demonstrate that Miles' (1990) assumption is correct; however, 
whether the length of the slip region, 1, is correct is not demonstrated. Therefore, a 
model of the boundary conditions at the contact line and along the plate is proposed 
below in which the liquid obeys the no-slip condition along the plate except within a 
distance of less than L, from the contact line. It is noted that L, is unknown. 

4.5. Non-dimensional analysis 
In general, dimensionless numbers are used to provide insight and to attempt to 
simplify complicated experimental results. In the present problem, the independent 
variables include the density of the liquid @), the dynamic viscosity of the liquid (p), 
the acceleration due to gravity (g) ,  the surface tension of the liquid (v), the oscillation 
stroke amplitude (s), the oscillation frequency ( f ) ,  the surface roughness of the solid 
(c), and other surface properties (an, n = 1,2, . . .). The first four independent variables 
are constant in the present experiments. The stroke amplitude and oscillation 
frequency are chosen input values. The surface roughness (e) and other surface 
properties (alZ) are not considered. s and w-l (the angular oscillation frequency, w = 

2nf) are chosen as the characteristic lengthscale and timescale for the present problem, 
respectively. Using the length- and timescales, the maximum plate velocity (ws) is the 
characteristic velocity. The dependent variable is the dimensional capillary coefficient. 

According to dimensional analysis, four independent non-dimensional parameters 
are required to represent the relationship amongst the seven parameters, and the four 
dominant forces (inertial force, gravitational force, viscous force, and surface-tension 
force). These are chosen as the Reynolds number (Re), Weber number (We),  Froude 
number (Fr), and A. The definitions of these parameters are 

inertial force p(ws)s pws2 
viscous force ,LL iu 

K us2, - -~ - -~ Re = 

(7) 
p(ws)2s pw2s3 

- K w2s3, - inertial force 
We = 

surface tension force (T (T 

inertial force (us)' w2s 
K w's, - - 

F' = gravitational force gs g 

V l @ ,  - w e ,  
v,maz ws . 

h = - r _  -- (9) 

The range of each parameter is Re - 1 to - 1900, see table 1 ; We - 0.0001 to - 7;  Fr - 0.04 to - 2; and h - 0 to - 0.1. 
Relationships amongst the non-dimensional parameters and the experimental results 

are sought. To isolate Weber-number effects, the result from a 1 Hz oscillation with a 
stroke amplitude of 2 mm is compared to the result from a 4 Hz oscillation with a 
stroke amplitude of 1 mm, since these two experiments have nearly identical Reynolds 
numbers, 24.9 and 24.7, respectively. These two results differ significantly. In the 4 Hz 
result, the contact line exhibits only stick motion; however, the contact line in the 1 Hz 
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result exhibits three kinds of motion (stick, partial slip, and free slip). W e  of the 
1 Hz experiment, 0.005, is one-half of W e  of the 4 Hz experiment. This implies that 
the surface-tension force is more dominant in the 1 Hz experiment; however, the 
1 Hz experiment exhibits more slip motion. This is counter-intuitive (i.e. an increase 
in surface tension should reduce slip motion). 

The result from a 1 Hz oscillation with a stroke amplitude of 4 mm is compared to 
the result from an 8 Hz oscillation with a stroke amplitude of 1 mm. For these 
experiments, Weber numbers are equal. Once again, these two results show a 
significant difference. In the 8 Hz experiment, the contact line always sticks; however, 
the 1 Hz result displays all three types of contact-line motion. Re of the 1 Hz 
experiment is twice Re of the 8 Hz experiment. This implies that the viscous effect is 
relatively smaller in the 1 Hz experiment; thus, the contact line in the 1 Hz experiment 
should exhibit additional slip. This conclusion is consistent with the present results; 
however, there is no obvious relation between the Re effect and the experimental 
results. 

The capillary number (= viscous force/surface-tension force = We/Re)  is always 
small (- 0.0001 to - 0.001) in the present experiments. This does not necessarily imply 
that the viscous effect can be neglected relative to the surface-tension effect. It is 
possible that the characteristic scales are chosen incorrectly. Since viscosity is very 
important in a boundary layer and the contact-line problem occurs in a small region 
(probably the same order of magnitude as the scale of the boundary layer in this 
problem), the viscous effects are probably important in the present problem. 

Striving to obtain a useful relationship between the non-dimensional parameters and 
the experimental results, the relationship between each possible pair of non- 
dimensional parameters is graphed for constant stroke amplitude and constant 
oscillation frequency. Also, the Re, Fr, and W e  effects on the maximum and minimum 
dynamic contact angles, on the maximum and minimum non-dimensional contact-line 
velocities, and on the maximum and minimum h values are examined. No specific 
conclusions are drawn from these results. For example, figures 23(a) and 23(b) show 
that the effects of Reynolds number and Weber number on the maximum and 
minimum non-dimensional contact-line velocities, respectively, are similar. Since Re K 

us2 and We cc w2s3, changes in w and s only stretch or compress the abscissa coordinate; 
therefore, the shapes of the curves are similar. As Re increases (i.e. viscous effect 
becomes less important), the maximum and minimum non-dimensional contact-line 
velocities approach zero, since smaller viscous effects induce more slip motion. 
Similarly, as the Weber number increases (i.e. the surface-tension effect becomes less 
important), the maximum and minimum non-dimensional contact-line velocities 
approach zero, since smaller surface-tension effects induce more slip motion. Still, no 
obvious relation between Re and W e  effects and the experimental results is obtained. A 
similar conclusion is made regarding Fr. The relative importance of the four forces is not 
apparent. Additional experiments are required with different solid-surface properties 
and different fluid properties to facilitate interpretation of the results and to identify 
the relative importance of each non-dimensional parameter. 

4.6. Boundary condition along the plate 
From the contact-line experiments and the flow observations near the contact line, it 
is known that the conventional (uni-directional low-Reynolds-number flow) contact- 
line boundary condition is unsuitable for the (higher-Reynolds number - 1-1900) 
oscillating contact-line boundary since the contact line exhibits different behaviours in 
these two ranges. Moreover, the behaviour of the liquid particles along the plate but 
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Approximate 
stroke amplitude 

(mm> 
0.5 
1 
2 
3 
4 
5 
6 

Average up 

0.0000 
0.0050 
0.0363 
0.0504 
0.0496 
0.0443 
0.0395 

Average a,, 

0.0000 
-0.0059 
-0.0384 
-0.0587 
- 0.0786 
- 0.0734 
- 0.0573 

Average t ,  

0.0000 
0.0774 
0.2691 
0.2759 
0.2836 
0.3127 
0.3566 

Average t, Average t ,  

1 .oooo 0.0000 
0.8292 0.0934 
0.4068 0.3241 
0.3730 0.351 1 
0.3581 0.3583 
0.2836 0.4037 
0.2247 0.4187 

TABLE 5. The average value of each parameter at different stroke amplitudes. 

beyond the contact-line region cannot be assumed to be the same as that at the contact 
point. The oscillating contact-line boundary condition along the plate is in agreement 
with Miles’ (1990) assumption; that is, slip occurs within a distance of L, from the 
contact line and flow along the plate obeys the no-slip condition outside this slip 
region. A boundary-condition model along the plate is presented below. 

As mentioned in 54.2, the dynamic contact angle is governed by the relative velocity 
and acceleration of the contact line ; however, the relationship between the contact-line 
acceleration and the dynamic contact angle remains undetermined from the present 
experimental results. Therefore, the boundary condition at the contact line is obtained 
based on the relationship, 0, =fly). 

From (4), h and 7 are unknowns and V, is prescribed. This equation is required to 
calculate the value of 7 at the plate; therefore, h must be known a priori. h is known 
from the present experiments. The results, presented in figures 17-19, show that h is a 
function of time, stroke amplitude, and to a lesser extent oscillation frequency, see (5) .  
The assumption is made that the frequency effect is negligible. Time and stroke 
amplitude are the two independent variables which are considered in the equation 
for A. 

According to the above assumption, a model for h = h(t, s) is proposed in figure 24. 
The proposed curve is composed of three parts: h > 0 (a sine curve with argument 0 
to n: rad), h = 0 (a straight line), h < 0 (a sine curve with argument n: to 2n: rad). a, is 
the maximum value of the positive sine curve ( A  > 0), a, is the minimum value of the 
negative sine curve ( A  < 0), t ,  is the duration of h > 0, t ,  is the duration of h = 0 (stick 
motion), t ,  is the duration of h < 0, and t,+t,+ t ,  is equal to 1. (Since the frequency 
effect on the time variation of h is neglected, the ap, a,, t,, t,, and t ,  are obtained by 
averaging over all frequencies the maximum values of h > 0, minimum values of 
h < 0, the durations of h > 0, the durations of h = 0, and the durations of h < 0 at 
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bo b, b2 b, R2 
UP -0.0239 0.0430 -0.0074 0.00034 0.9666 
a n  0.0126 -0.0184 -0.0050 0.00103 0.9921 
t ,  -0.1669 0.3541 -0.0906 0.00770 0.9806 
t* 1.3556 -0.7520 0.1843 -0.01511 0.9812 

TABLE 6. The coefficients, bi, and the R2 value of the polynomial fits for all parameters. 

a particular stroke amplitude, respectively.) The average value of each parameter as a 
function of stroke amplitude are shown in table 5. Using these data, a polynomial fit 
is applied to obtain a representation of each parameter. The general form of the curve- 
fit for each parameter is 

3 

a,, a,, t,, t, = C bisi, 0.5 < s < 6 ,  
i = O  

and t ,  = l.O-t,-t,, (1 1) 

where s represents the stroke amplitude. For s = 0.5 mm, a,, a,, t,, and t ,  are equal to 
0 and t, is equal to 1 (stick motion). The coefficients, bi, and the R2 value of the 
polynomial fits are given in table 6 .  

Using the model shown in figure 24 and the polynomial fits for each parameter, the 
expression for h is 

h = a,@) sin (xt/t,(s)), 0 < t < t,(s), 
h = 0, 

h = a,(s) sin (n(t - t,(s) - t,(s))/t,(s)) 

0 < t -  t,(s) < t,(s), ] (12) 

0 < t - t,(s) - t,(s) < tn(s). 

The results from (12) are shown in figure 20. The solid curves represent the calculated 
values of h using (12) and the dotted curves represent the measured data. The results 
show that the proposed expression of h functions well in the higher-amplitude regime; 
however, it does not fit the measured data as well in the low-amplitude regime since the 
frequency effect and inertial effect have been neglected in the present analysis. 

According to our experimental observations, there is a small slip region, L,. The 
actual flow behaviour in this region is still unknown. In this slip region, flow is assumed 
to satisfy Navier’s slip model at the solid boundary; however, the magnitude of the slip 
length, I ,  is unknown (see the Appendix for the magnitude of the mean slip length, I,, 
at the contact point, obtained by averaging l,(t) over a period). Rather, 1, is related to 
h at the contact line. Therefore, a conjecture is made that the magnitude of the slip 
length, I,, is maximum at the contact line and varies linearly to zero (no-slip) at a 
distance of L, from the contact line. The slip boundary condition is given by (3). To 
present the boundary condition in dimensional form, A, (= hws) is used. 

Analogously to Miles (1990), the relation between 1, and h at the contact line is 
determined. Conceptually, the limit of vorticity at the contact line approaching along 
the plate must be the same as the limit of vorticity at the contact line approaching along 
the free surface. The vorticity is defined as 6 = uy - uz, where u is the horizontal velocity 
component, 21 is the vertical velocity component (refer to the coordinate system defined 
in figure l), and the subscripts represent differentiation with respect to x and y .  Because 
u = 0 along the plate, uy = 0; therefore, the vorticity, 6, along the plate is 

6 = - v, (x = 0,Y < Y J ,  (13) 
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where Vis the vertical velocity along the plate and yc  is the y-coordinate of the contact 
point. Using (13), (3) can be rewritten as 

V -  V, = -1,c ( x  = 0,y  < y,). (14) 
Along the free surface, the shear stress, pv(u2/+os), is equal to zero; therefore, uy = 
-0,. The vorticity, Q along the free surface is 

5 = -2% (x > O,Y-Y, = 71, (15) 
where ym,  the static free surface, is a function of x .  Since o is the vertical velocity at the 
free surface, it is equal to yt at the plate. 7 is temporally periodic and therefore 7 - eiUt. 
So 7t can be written as iwv and (1 5)  can be rewritten as 

5 = -2iw7, (x+O,y-y, = 7). (16) 
The vorticity at the contact line must be the same regardless of the approach direction; 
therefore, as y+yc,  (14) is equivalent to 

(17) a7 
-- V, = 1,(2iw7,) ( x  = O,y+y,). 
at 

Comparing to (4), the relation between 1, and A, is as follows: 

1,(2iwy,) = A,(tan-l(r,) +in) ( x  = 0 , y  +y,). (18) 

If 7, = 0 (0, = in), (18) shows that A, must be zero. Fortunately, according to the 
present experimental results, A, is equal to zero when 7, = 0. Usually 8, is less than in, 
and (18) is valid. When Oe = in, the plate is near the bottom-stroke position. According 
to the present experimental results, the contact line associated with a dynamic contact 
angle equal to in undergoes stick motion. Stick motion implies V = V, which means 
that A, = 0 and no slip implies that the slip length, I,, is zero. Therefore, (18) is 
consistent at y, = 0. Now, using the conjectural model of 1, as given in the previous 
paragraph, and the data at the contact line, 1, is 

where L, is the vertical length of the slip region. The boundary condition along the slip 
region is given by (1 8) and (1 9). 

The boundary condition in the no-slip region is straightforward : 

v = v, ( y - y ,  d - L J  (20) 

Therefore, the complete boundary condition along the plate is summarized as follows : 

( (3 ' 1 a7 -- V, = A, tan-' - t i n  
at (x = 0,y  = y,), 

and 
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Equations 2 1 (a-e) provide a reasonable boundary-condition model along the plate 
for an oscillating contact line. Based on this model, the wave field generated by a 
vertically oscillating vertical plate should be predicted accurately. 

A good model should be as simple as possible and predict results precisely. The 
proposed model does not have a simple form but it is formulated based on the 
experimental results and can predict the contact-line behaviour accurately. Applying 
the present boundary model in numerical analysis may not be straightforward; further 
simplification may be required. (For example, it is easy to apply if the slip length, I,, 
is related to A, at the contact line as done above and, then, the slip region is assumed 
constant along the entire plate.) However, each simplified model must be able to 
predict the induced flow field well. 

5 .  Conclusions 
The contact-line problem is very important in many flow fields which include 

three two-phase (gas-liquid, liquid-solid, and gas-solid) interfaces with a common 
intersection. In the absence of proper boundary conditions to describe the contact-line 
behaviour, such a flow field cannot be predicted precisely. Many contact-line problems 
have been studied and several contact-line boundary-condition models have been 
proposed, but little attention has been focused on a model for an oscillating contact- 
line boundary. Many interesting oscillatory contact-line phenomena as well as a useful 
model for this boundary are presented. It is remarkable that the dynamic contact-line 
behaviour is similar over such a large range of frequencies. (In contrast, over the same 
frequency range, gravity waves and gravity-capillary waves exhibit vastly differing 
dynamics.) 

For an oscillating contact line, the contact-line motion is classified into two 
categories: a low-amplitude regime (stroke amplitude less than 4 mm) and a higher- 
amplitude regime (stroke amplitude greater than or equal to 4 mm). In the low- 
amplitude regime, the peak-to-peak displacement of the contact-line motion increases 
as the stroke amplitude increases. For a stroke amplitude less than 1 mm, the contact 
line undergoes stick motion only. As the stroke amplitude becomes larger, the contact 
line begins to slip (i.e. the contact line undergoes stick, partial-slip, and free-slip motion 
during an oscillation period). In the higher-amplitude regime, the contact-line-motion 
curve becomes more asymmetric and the peak-to-peak displacement of the motion is 
decreased as the stroke amplitude is increased. With an increase in the stroke 
amplitude, the contact line undergoes partial-slip and/or slip motion during more of 
the period and the slip motion occurs at positions other than near the top-stroke 
position. The contact-line motion becomes insensitive to the variations of the stroke 
amplitude when the stroke amplitude becomes larger than 5 mm. Also, it is concluded 
that the frequency effect on the contact-line behaviour is larger in the higher-amplitude 
regime than in the low-amplitude regime and that, in general, the frequency effect is 
smaller than the amplitude effect on the behaviour of the contact line. 

The peak-to-peak value of the time-history curve is increased in the low-amplitude 
regime and is decreased in the higher-amplitude regime as the stroke amplitude is 
increased. When the contact line undergoes free-slip motion, the dynamic contact angle 
remains constant. The maximum periodic dynamic contact angle is increased in the 
low-amplitude regime and is decreased in the higher-amplitude regime as the stroke 
amplitude is increased; however, the minimum periodic dynamic contact angle exhibits 
the opposite behaviour. It is also shown that the frequency effect is small relative to the 
amplitude effect on the dynamic contact angle. 
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For an oscillating contact line with slip, the shape of the T/r(non)-6c relationship is 
shaped like an inverted T. It is significantly different than the conventional relationship 
presented in figure 2. For small stroke amplitude (less than 1 mm), the contact-line 
motion is more stick-motion-like. In the low-amplitude regime, the horizontal width at 
the lower end of the graph (see figures 13-15) increases as the stroke amplitude is 
increased beyond 1 mm (i.e. the contact line undergoes additional free-slip motion). In 
the higher-amplitude regime, the horizontal region becomes a step-like curve which 
indicates that there are multiple locations which undergo free-slip motion. 

The non-dimensional analysis yields little additional information. The relative effects 
of the Reynolds number, Froude number, and Weber number are not apparent, and 
reduced viscous or surface-tension effects produce additional slip motion. The capillary 
number of each experiment is very small; however, viscous effects are believed to be 
important in the contact-line region. Additional experiments are required with 
different solid-surface properties and different fluid properties. 

To determine the boundary condition at the contact line, A, the capillary coefficient, 
must be known a priori. h is neither constant nor always positive as was the A, used 
by Hocking (19876). h is nonlinear and varies with time, stroke amplitude, and the 
frequency of oscillation. However, the effect of the change of frequency is small relative 
to the change of stroke amplitude. The h curve is composed essentially of three parts: 
h > 0, h = 0 (stick motion), h < 0. A proposed model of h = h(t,s) is given in (12). 
This model is not very satisfying since the frequency effect is neglected and the model 
is based solely on the relationship between the contact-line velocity and the dynamic 
contact angle. Therefore, further investigation on the effect of the contact-line 
acceleration is necessary. 

Particle-tracking velocimetry experiments reveal the particle behaviour along the 
plate. For a 0.5 mm oscillation (stick contact-line motion), the particles move with the 
plate and there is no vortex formed near the meniscus. For a 4mm oscillation 
(stick-slip contact-line motion), the particle behaviour is much more complex and 
there is a vortex formed near the meniscus. The boundary condition along the plate 
obeys Miles’ (1990) assumption; however, the length of the slip region, L,, is not 
determined and thus it is not shown whether it is equal to Miles’ I ,  (i.e. the liquid obeys 
the no-slip condition along the plate except within a distance of L, from the contact 
line). 

Although the boundary-condition model, (21 a-e), is not perfect, it provides a 
reasonable boundary-condition model along the plate for an oscillating contact line. 
Using this model, the flow field should be predicted accurately. However, this model 
still has a singularity at the slip to no-slip transition. Perhaps an exponential decrease 
in I ,  with y might be a more suitable model for numerical calculations. Another 
alternative is to use a constant 1,; although not modelling the actual phenomena, it may 
be sufficient as a boundary condition along the plate. 

The flow behaviour in the immediate vicinity of the slip region is still elusive. To 
verify the conjectural slip-length model and the length of the slip region, better 
resolution is essential. To verify the proposed boundary model, numerical calculation 
of waves generated by the contact line is suggested. A comparison of the calculated 
wave field with the measured wave field will demonstrate the suitability of this 
boundary model. Measuring the particle velocities near the meniscus may help to 
explain the formation of the vortex in the flow field; therefore, particle-imaging 
velocimetry measurements are suggested. 

We wish to acknowledge and thank Professor W. W. Schultz for his useful 
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Approximate 
stroke amplitude 

(mm) 
0.5 
1 
2 
3 
4 
5 
6 

Oscillation frequency (Hz) 

1 2 4 6 8 12 

0 0 0 0 0 0 
0.0085 0.0032 0.0016 0.0015 0.0059 0.0024 
0.0729 0.0661 0.0586 0.0527 0.0491 0.0440 
0.1525 0.1231 0.1018 0.1010 0.0859 0.1228 
0.2558 0.2306 0.1897 0.1641 0.1906 0.1725 
0.3854 0.4409 0.3404 0.3560 0.3400 - 
0.6066 0.6712 0.6129 0.6652 0.6379 - 

TABLE 7. Mean slip length (mm) for each experiment. 
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Appendix. The mean slip length 
Using the present experimental results, the slip length, ls ( t ) ,  at the contact point is 

obtained by using (12) and (18). It is then averaged over a period to obtain the mean 
slip length, 1,. Since the time history of the slip length does not exhibit an explicit 
relationship with the oscillation frequency and stroke amplitude, we only present the 
value of the mean slip length at the contact line. The expression for is is 

+T 
& = ;l l,(t)dt. 

The mean slip length provides an order-of-magnitude estimate. Table 7 shows the value 
of mean slip length for each experiment. The maximum mean slip length is about 10 % 
of the stroke amplitude. The data, presented in figure 25, are scattered about the fitted 
curve which shows the frequency effect on the mean slip length. 
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